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Abstract
Generalized estimating equation (GEE) is widely adopted for regression
modeling for longitudinal data, taking account of potential correlations within
the same subjects. Although the standardGEEassumes common regression coef-
ficients among all the subjects, such an assumption may not be realistic when
there is potential heterogeneity in regression coefficients among subjects. In this
paper, we develop a flexible and interpretable approach, called grouped GEE
analysis, to modeling longitudinal data with allowing heterogeneity in regres-
sion coefficients. The proposed method assumes that the subjects are divided
into a finite number of groups and subjects within the same group share the same
regression coefficient. We provide a simple algorithm for grouping subjects and
estimating the regression coefficients simultaneously, and show the asymptotic
properties of the proposed estimator. The number of groups can be determined
by the cross validation with averaging method. We demonstrate the proposed
method through simulation studies and an application to a real data set.
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1 INTRODUCTION

Longitudinal data where response variables (repeated
measurements) within the same subject are correlated
widely appears in biomedical studies. For analyzing
longitudinal data, it is typically difficult to correctly
specify the underlying correlation structures among
response variables within the same subject, and one of the
standard approaches is the generalized estimating equa-
tions (GEE) developed by Liang and Zeger (1986), which
uses “working” correlation structures specified by users.
The advantage of the GEE approach is that the estimator
is still consistent even when the working correlation is
misspecified. However, the existing GEE methods assume
homogeneous regression coefficients that are common
to all the subjects, which could be restrictive in practical
applications since there might be potential heterogene-

ity among subjects or clusters, as confirmed in several
applications (Barban & Billari, 2012; Lin & Ng, 2012;
Nagin et al., 2018). To address such heterogeneity, a crude
approach is to apply a model separately to each subject,
but the results are typically inaccurate and unstable as
small subject-wise sample sizes often arise in real longi-
tudinal data. Therefore, some compromised approach is
required.
In this work, we extend the standard GEE analysis to

take into account potential heterogeneity in longitudinal
data. Specifically, we develop grouped GEE (GGEE)
analysis by adopting the grouping approach that is widely
adopted in literature for panel data analysis (Bonhomme
& Manresa, 2015; Liu et al., 2020; Zhang et al., 2019). We
assume that subjects in longitudinal data can be classified
into a finite number of groups, and subjects within the
same group share the same regression coefficients; that is,
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the regression coefficients are homogeneous over subjects
in the same groups. Since the grouping assignment of
subjects is unknown, we treat it as unknown parameters
and estimate them and the group-wise regression coef-
ficient simultaneously. Given the grouping parameters,
the standard GEE can be performed to obtain group-wise
estimators of regression coefficients. On the other hand,
given the group-wise regression coefficients, we consider
estimating the grouping parameters using a kind of Maha-
lanobis distance between response variables and predictors
taking account of potential correlations via a working
correlationmatrix. In other words, we employ the working
correlation not only in performing GEE analysis in each
group but also in estimating the grouping assignment. We
will show that the GGEE method can be easily carried
out by a simple iterative algorithm similar to the 𝑘-means
algorithm that combines the existing algorithm for the
standard GEE and simple optimization steps for grouping
assignment. Moreover, we adopt the cross validation with
the averaging method proposed in Wang (2010) to carry
out a data-dependent selection of the number of groups.
We derive the statistical properties of the GGEE estima-

tor in an asymptotic framework where both 𝑛 (the number
of subjects) and 𝑇 (the number of repeatedmeasurements)
tend to infinity, but we here allow 𝑇 to grow considerably
slower than 𝑛, namely, 𝑛∕𝑇𝜈 → 0 for some 𝜈 > 0. Hence,
our method can be applied when 𝑇 is much smaller than 𝑛
as observed in many applications using longitudinal data.
As theoretical difficulties of the grouped estimation in lon-
gitudinal data analysis, the true correlations within the
same subject can be considerably high, so the existing the-
oretical argument assuming negligibly small correlations
imposed typically by mixing conditions (Bonhomme &
Manresa, 2015; Gu & Volgushev, 2019; Zhang et al., 2019)
for the true underlying correlations are no more applica-
ble. To overcome the limitation of the existing theoretical
argument, we consider grouping assignment using a kind
ofMahalanobis distance with working correlation.Wewill
show that such a grouping strategy leads to the consis-
tent estimation of the grouping parameters as long as the
working correlation is reasonably close to the true one.
Therefore, even when the underlying correlations within
the same subject are not weak, we can successfully esti-
mate the grouping parameters using a reasonable working
correlation matrix. Then, we will establish consistency
and asymptotic normality of the GGEE estimator of the
regression coefficients and provide a consistent estimator
of asymptotic variances.
In the context of longitudinal data or clustered data

analysis, several methods to take account of the poten-
tial heterogeneity among subjects have been proposed. Ng
and McLachlan (2014), Rubin and Wu (1997), Sugasawa
et al. (2019), and Sun et al. (2007) proposed a mixture

modeling based on random effects, but the estimation
algorithms can be computationally very intensive since
the algorithms include iteration steps that entail numer-
ical integration. On the other hand, Rosen et al. (2000)
and Tang and Qu (2016) proposed a mixture modeling
based on the GEE, but the primary interest in these works
is estimating the component distributions in the mixture
rather than grouping subjects. Fokkema et al. (2018) and
Hajjem et al. (2011, 2017) employed regression tree tech-
niques for grouping observations, but the tree-basedmeth-
ods can handle grouping based on covariate information
rather than regression coefficients. Moreover, Coffey et al.
(2014), Vogt and Linton (2017), and Zhu and Qu (2018)
proposed grouping methods for longitudinal curves, and
Tang et al. (2021) developed covariate-specific grouping
methods via regularization. Lastly, Zhu et al. (2021) is
similar to our work, which proposed the GEE-type loss
functions penalizing pairwise distance of heterogeneous
fixed effects, but computational cost rapidly becomes
much larger as the sample size increases compared to the
𝑘-means method. To the best of our knowledge, this paper
is the first one to consider grouped estimation in the GEE
analysis by the 𝑘-means algorithm with a quite small
computational burden.
This paper is organized as follows. In Section 2, we

illustrate the proposed GEE analysis and provide an itera-
tive estimation algorithm. We also propose the averaging
method for selecting the number of groups. In Sec-
tion 3, we give the asymptotic properties of the GGEE
estimator. In Section 4, we demonstrate the GGEE anal-
ysis through simulation studies and an application to a
real longitudinal data set. We give some discussions in
Section 6. All the technical details and the proofs of the
theorems, additional numerical results, and data analy-
ses are provided in the Supporting Information. R code
implementing the proposed method is also available in the
Supporting Information.

2 GGEE ANALYSIS

2.1 Grouped models for longitudinal
data

For longitudinal data, let 𝑦𝑖𝑡 be the response of interest and
𝒙𝑖𝑡 be a 𝑝-dimensional vector of covariate information of
subject 𝑖 at time 𝑡, where 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇𝑖 . For
ease of notation, we set 𝑇𝑖 = 𝑇 for all 𝑖, representing a bal-
anced data case, but the extension to an unbalanced case
is straightforward. We consider a generalized linear model
for 𝑦𝑖𝑡, given by

𝑓(𝑦𝑖𝑡|𝒙𝑖𝑡; 𝜷𝑖, 𝜙) = exp [{𝑦𝑖𝑡𝜃𝑖𝑡 − 𝑎(𝜃𝑖𝑡) + 𝑏(𝑦𝑖𝑡)}∕𝜙], (1)
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where 𝑎(⋅) and 𝑏(⋅) are known functions, and 𝜃𝑖𝑡 =

𝑢(𝒙⊤
𝑖𝑡
𝜷𝑖) for a knownmonotone function 𝑢(⋅). A commonly

used link function is the canonical link function, that is,
𝑢(𝑥) = 𝑥. Here 𝜷𝑖 is the regression parameter of inter-
est that can be heterogeneous among subjects, and 𝜙 is
a known scale parameter common to all subjects. Under
the model (1), the first two moments of 𝑦𝑖𝑡 are given by
𝑚(𝒙⊤

𝑖𝑡
𝜷𝑖) = 𝑎

′(𝜃𝑖𝑡) and 𝜎2(𝒙⊤𝑖𝑡𝜷𝑖) = 𝑎
′′(𝜃𝑖𝑡)𝜙, respectively.

For example, under binary response, it follows that 𝑎(𝑥) =
log{1 + exp(𝑥)}, leading to the logistic model given by
𝑚(𝒙⊤

𝑖𝑡
𝜷𝑖) = {1 + exp(−𝒙

⊤
𝑖𝑡
𝜷𝑖)}

−1.
In the standard GEE analysis, the regression parameters

are homogeneous, that is, 𝜷𝑖 = 𝜷, but we allow potential
heterogeneity among the subjects. However, the number
of 𝜷𝑖 increases with the number of subjects, so 𝜷𝑖 cannot
be estimated with reasonable accuracy as long as 𝑇 is not
large, which is the standard situation in longitudinal data
analysis. Hence, we consider a grouped structure for the
subjects, that is, the 𝑛 subjects are divided into 𝐺 groups,
and subjects within the same group share the same regres-
sion coefficients. Specifically, we introduce an unknown
grouping variable 𝑔𝑖 ∈ {1, … , 𝐺}, which determines the
group that 𝑖th subject belongs to. Then, we define 𝜷𝑖 =
𝜷𝑔𝑖 under which the unknown regression parameters are
𝜷1, … , 𝜷𝐺 . Therefore, if𝐺 is not large compared with 𝑛 and
𝑇, then 𝜷1, … , 𝜷𝐺 can be accurately estimated. Moreover,
due to the grouping nature, the estimation results of 𝑔𝑖 give
grouping of subjects in terms of regression coefficients, so
the estimation result is easily interpretable for users. We
also treat𝐺 as an unknown parameter, but we assume that
𝐺 is known for a while. The estimation will be discussed in
Section 2.3.

2.2 Estimation algorithm

Define 𝒚𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑇)
⊤ as a 𝑇-dimensional response

vector, 𝑿𝑖 = (𝒙𝑖1, … , 𝒙𝑖𝑇)⊤ as a 𝑇 × 𝑝 covariate matrix.
We also define 𝑚(𝑿𝑖𝜷𝑔) = (𝑚(𝒙

⊤
𝑖1
𝜷𝑔), … ,𝑚(𝒙

⊤
𝑖𝑇
𝜷𝑔))

⊤,
𝑨𝑖(𝜷𝑔) = diag(𝜎

2(𝒙⊤
𝑖1
𝜷𝑔), … , 𝜎

2(𝒙⊤
𝑖𝑇
𝜷𝑔)), 𝚫𝑖(𝜷𝑔) =

diag(𝑢′(𝒙⊤
𝑖1
𝜷𝑔), … , 𝑢

′(𝒙⊤
𝑖𝑇
𝜷𝑔)), where diag(𝒂) is a diag-

onal matrix with a vector 𝒂 as the diagonal elements,
and 𝑫𝑖(𝜷𝑔) = 𝑨𝑖(𝜷𝑔)𝚫𝑖(𝜷𝑔)𝑿𝑖 . In what follows, we might
abbreviate the explicit dependence on the parameters for
notational simplicity when there seems to be no confusion.
We here introduce “working” correlation matrix 𝑹(𝜶) to
approximate the true underlying correlation matrix of 𝒚𝑖 ,
which is assumed to be common across different subjects
for simplicity. This assumption can be easily extended to
the heterogeneous correlation structures among different
subjects. The working correlation matrix can be chosen
freely, where it might include the nuisance unknown

parameter 𝜶. Then, we define working covariance matrix
𝑽𝑖(𝜷) as 𝑽𝑖(𝜷) = 𝑨

1∕2

𝑖
(𝜷)𝑹̂𝑨

1∕2

𝑖
(𝜷) with 𝑹̂ = 𝑹(𝜶). If 𝑹̂

is consistent to the true correlation matrix 𝑹0, 𝑽𝑖(𝜷
0
)

with the true parameter 𝜷0 is also consistent to the true
covariance matrix of 𝒚𝑖 .
Given the grouping parameter 𝜸 = (𝑔1, … , 𝑔𝑛), we can

estimate 𝜷𝑔 by performing the standard GEE estimation
(Liang & Zeger, 1986) for each group, namely, solving the
following estimating equation:

𝑺𝑔(𝜷𝑔) ≡

𝑛∑
𝑖=1

1(𝑔𝑖 = 𝑔)𝑺𝑖(𝜷𝑔) = 0,

s.t 𝑺𝑖(𝛽𝑔) ≡ 𝑫
⊤
𝑖 (𝜷𝑔)𝑽

−1
𝑖 (𝜷𝑔){𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔)},

(2)

which is the GEE based on the subjects classified to
the 𝑔th group. We can employ an existing numerical
algorithm for the standard GEE to obtain the solution
of (2). On the other hand, given 𝜷 = (𝜷

⊤
1 , … , 𝜷

⊤
𝐺)
⊤, it

is quite reasonable to classify the subjects into groups
having the most suitable regression structures to explain
the variation of 𝒚𝑖 . Thus, we propose estimating the
unknown 𝜸 based on the following minimization
problem:

𝑔𝑖(𝜷) = argmin
𝑔=1,…,𝐺

{𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔)}
⊤𝑹̂

−1
{𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔)}. (3)

The objective function in (3) can be seen as a kind of the
Mahalanobis distance with taking the working correla-
tion structure into account. Such an estimation strategy
for the grouping variable has not been paid attention to
very much, but the use of the working correlation in the
grouping step is shown to be quite important to expand
our theoretical argument given in Section 3. Note that the
above minimization problem can be carried out separately
for each subject; thus (3) can be easily solved by simply
evaluating all the values of the objective function over 𝑔 ∈
{1, … , 𝐺}.
Regarding the estimation of the nuisance parameter 𝜶 in

theworking correlation, we suggest using amoment-based
method. Given 𝜷 and 𝜸 , one can estimate 𝜶 by solving the
following minimization problem:

𝜶(𝜷, 𝜸) = argmin
𝜶

‖‖‖𝑹(𝜶) − 1

𝑛

𝑛∑
𝑖=1

𝑨
−1∕2

𝑖
{𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔𝑖 )}{𝒚𝑖

−𝑚(𝑿𝑖𝜷𝑔𝑖 )}
⊤𝑨

−1∕2

𝑖
‖‖‖𝐹, (4)

where ‖ ⋅ ‖𝐹 is the Frobenius norm. This method can be
easily extended to the heterogeneous correlation struc-
tures among different groups. Let 𝜶1, … , 𝜶𝐺 be different
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correlation parameters. Then, 𝜶𝑔 can be estimated by
minimizing

‖‖‖𝑹(𝜶𝑔) − 𝑛−1𝑔
𝑛∑
𝑖=1

1(𝑔𝑖 = 𝑔)𝑨
−1∕2

𝑖
{𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔𝑖 )}{

𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔𝑖 )}
⊤𝑨

−1∕2

𝑖
‖‖‖𝐹,

where 𝑛𝑔 is the number of subjects classified to the
𝑔th group.
The estimating equation (2) and two optimization prob-

lems (3) and (4) define the GGEE estimator of 𝜷 and 𝜸 ,
and the estimator can be easily computed by the following
iterative algorithm 1:

ALGORITHM 1 (GGEE estimation)

Starting from some initial values 𝜷(0), 𝜸(0) and 𝜶(0), we repeat the
following procedure until algorithm converges:
– Update 𝜸(𝑟) to get 𝜸(𝑟+1) by solving (3) with 𝜷 = 𝜷(𝑟) and
𝜶 = 𝜶(𝑟).

– Update 𝜷(𝑟) to get 𝜷(𝑟+1) by solving (2) with 𝜸 = 𝜸(𝑟+1) and
𝜶 = 𝜶(𝑟).

– Update 𝜶(𝑟) to get 𝜶(𝑟+1) by solving (4) with 𝜷 = 𝜷(𝑟+1) and
𝜸 = 𝜸(𝑟+1).

Since there might be multiple solutions for the GGEE
estimator, the above algorithm might be sensitive to the
setting of initial values. A reasonable starting value for
𝜶 would induce an independent correlation matrix of 𝑹,
for example, 𝜶 = 0 in the exchangeable working correla-
tion. Regarding 𝜷 and 𝜸 , we suggest two simple methods
to determine their initial values. First method is to apply
the finite mixture models with 𝐺 components of the form:
𝑦𝑖𝑡|(𝑧𝑖𝑡 = 𝑘) ∼ ℎ𝑘(𝑦𝑖𝑡; 𝒙⊤𝑖𝑡𝜷𝑘) and 𝑃(𝑧𝑖𝑡 = 𝑘) = 𝜋𝑘, for 𝑘 =
1,… , 𝐺, where ℎ𝑘 is the distribution having mean𝑚(𝒙⊤𝑖𝑡𝜷).
Then, we set the initial values of 𝜷𝑘 and 𝑔𝑖 to the esti-
mates of 𝜷𝑘 and the maximizer of

∑𝑇

𝑡=1
𝑃∗(𝑧𝑖𝑡 = 𝑘) over

𝑘 ∈ {1, … , 𝐺}, respectively, where 𝑃∗(𝑧𝑖𝑡 = 𝑘) is the condi-
tional probability that 𝑦𝑖𝑡 belongs to the 𝑘th group. The
second approach is separately fitting the regression model
with mean structure 𝑚(𝒙⊤

𝑖𝑡
𝜷𝑖) for each subject. Based on

the estimates 𝜷𝑖 of 𝜷𝑖 , we apply the 𝑘-means clustering
algorithm with 𝐺 clusters to the 𝑛-points {𝜷1, … , 𝜷𝑛}, and
set the initial values of 𝜷𝑘 and 𝑔𝑖 to the center of the
resulting clusters and clustering assignment, respectively.
Note that the second method is only applicable when 𝑇 is
sufficiently larger than 𝑝 to get stable estimates of 𝜷𝑖 .

2.3 Selecting the number of groups

Since the number of groups is typically unknown in prac-
tice, we need to estimate it based on appropriate criteria.

One possible strategy is to adopt a criterion using quasi-
likelihood (Wedderburn, 1974) and to use a penalty term
in view of Bayesian-type information criterion in GEE
analysis (Wang & Qu, 2009). However, the theoretical
asymptotic properties of such approaches are not nec-
essarily clear even under the standard GEE settings so
that the theoretical investigation would be more com-
plicated under the grouping structure. Instead, we here
adopt the cross-validation with averaging (CVA) method
proposed in Wang (2010), which is shown to have the
selection consistency when the clusters are properly sep-
arated into subgroups. The same strategy is adopted in
Zhang et al. (2019) in the context of quantile regression for
panel data.
The CVA criterion is concerned with clustering instabil-

ity under given 𝐺. For 𝑐 = 1,… , 𝐶, we randomly divide 𝑛
subjects into three subsets: two training data sets with sizes
𝑀 and one testing set with size 𝑛 − 2𝑀, where the sub-
ject indices included in the three subsets are denoted by
𝑍𝑐1, 𝑍

𝑐
2, and𝑍

𝑐
3, respectively, that is, |𝑍𝑐1| = |𝑍𝑐2| = 𝑀, |𝑍𝑐3| =

𝑛 − 2𝑀,𝑍𝑐
ℎ
∩ 𝑍𝑐

ℎ′
= ∅ forℎ ≠ ℎ′ and∪ℎ=1,2,3𝑍𝑐ℎ = {1, … , 𝑛}.

We first apply the proposedGGEEmethod to the two train-
ing data sets, which gives us the estimates of regression
coefficients and working correlation matrices. Then, we
can compute the optimal grouping assignment in the test
data as

𝑔
(ℎ)
𝑖
= argmin

𝑔=1,…,𝐺
{𝒚𝑖 − 𝑚(𝑿𝑖𝜷

(ℎ)

𝑔 )}⊤{𝑹̂
(ℎ)
}−1{𝒚𝑖 − 𝑚(𝑿𝑖𝜷

(ℎ)

𝑔 )},

𝑖 ∈ 𝑍𝑐3,

where 𝜷
(ℎ)

𝑔 and 𝑹̂
(ℎ)

are estimates of regression coefficients
and working correlation based on the ℎth training data
for ℎ = 1, 2. Based on the grouping assignment, grouping
instability can be quantified as

𝑠̂𝑐(𝐺) =
∑
𝑖,𝑗∈𝑍𝑐

3

1
{
1(𝑔(1)

𝑖
= 𝑔

(1)
𝑗
) + 1(𝑔(2)

𝑖
= 𝑔

(2)
𝑗
) = 1

}
,

since the summand of 𝑠̂𝑐(𝐺) takes the value 1 when the 𝑖th
and 𝑗th subjects in the testing set are classified into the
same group if we use the estimators based on one train-
ing data, but they are classified into the different groups
if we use the estimators based on the other training data,
which implies that the grouping results are more unsta-
ble as 𝑠̂𝑐(𝐺) is large. By averaging the above values over
𝑐 = 1,… , 𝐶, we have 𝑠̂(𝐺) = 𝐶−1

∑𝐶

𝑐=1
𝑠̂𝑐(𝐺), and we select

𝐺 as theminimizer of the criterion among some candidates
of𝐺. Finally, regarding the choice of𝑀, we set𝑀 = ⌊𝑛∕3⌋,
so the three subsets have almost the same number of
subjects.
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3 ASYMPTOTIC PROPERTIES

We here provide the asymptotic properties of the GGEE
estimators, that is, the grouping parameter 𝜸 can be con-
sistently estimated, and 𝜷𝑔 admits both consistency and
asymptotic normality. Our asymptotic framework is that
both 𝑛 and 𝑇 tend to infinity, but we allow 𝑇 to grow
considerably slower than 𝑛, as discussed later.
We first prepare some notations before assump-

tions. Let 𝑴𝑔(𝜷𝑔) = Cov(𝑺𝑔(𝜷𝑔)) =
∑𝑛

𝑖=1
1{𝑔𝑖 =

𝑔}𝑫⊤𝑖 𝑽
−1
𝑖 𝚺𝑖(𝜷𝑔)𝑽

−1
𝑖 𝑫𝑖 and 𝑯𝑔(𝜷𝑔) = −E[𝜕𝑺𝑔(𝜷𝑔)∕𝜕𝜷𝑔] =∑𝑛

𝑖=1
1{𝑔𝑖 = 𝑔}𝑫

⊤
𝑖 𝑽

−1
𝑖 𝑫𝑖 . We here denote the working cor-

relation matrix as 𝑹(𝜶, 𝜷, 𝜸) to emphasize its dependence
on 𝜶, 𝜷, and 𝜸 , and let 𝑹̂(𝜷, 𝜸) = 𝑹(𝜶, 𝜷, 𝜸). We also let
𝑹(𝜷, 𝜸) = 𝑹(𝜶, 𝜷, 𝜸) be a constant positive definite matrix,
where 𝛼 is a nonrandom constant to which 𝜶 converges.
We do not require 𝑹(𝜷, 𝜸) to be the true correlation matrix
𝑹0. Next, we denote 𝑽𝑖(𝜷𝑔) by replacing 𝑹̂(𝜷, 𝜸) with
𝑹(𝜷, 𝜸) in 𝑽𝑖(𝜷𝑔). 𝑺𝑖(𝜷𝑔), 𝑺𝑔(𝜷𝑔),𝑴𝑔(𝜷𝑔), and 𝑯𝑔(𝜷𝑔) are
defined similarly. To facilitate the Taylor expansion of
the estimating function of GEE, we denote the negative
gradient function of 𝑺𝑖(𝜷𝑔) as 𝓓𝑖(𝜷𝑔) = −𝜕𝑺𝑖(𝜷𝑔)∕𝜕𝜷

⊤
𝑔 .

𝓓𝑖(𝜷𝑔) is defined as 𝑽𝑖(𝜷𝑔). For 𝑔 = 1,… , 𝐺, let 𝜷
0
𝑔 be a

true value of 𝜷𝑔 and 𝑔
0
𝑖
be a group variable, which 𝑖th

cluster actually belongs to. Then, we also define the oracle
score function for 𝜷𝑔 under the true grouping assignment

as 𝑺∗𝑔(𝜷𝑔) =
∑𝑛

𝑖=1
1{𝑔0

𝑖
= 𝑔}𝑺𝑖(𝜷𝑔). 𝑺

∗

𝑔(𝜷𝑔), 𝑴
∗

𝑔(𝜷𝑔), and

𝑯
∗

𝑔(𝜷𝑔) are similarly defined. As discussed in Xie and
Yang (2003), to prove the existence and weak consistency
of the clustered GEE estimators, we need assumptions
given later in Assumption (A3), that is, for all 𝑔 = 1,… , 𝐺,
𝑯
∗

𝑔(𝜷
0
𝑔)s or 𝜆min(𝑯

∗
) ≡ min1≤𝑔≤𝐺 𝜆min(𝑯

∗

𝑔(𝜷
0
𝑔)) are diver-

gent at a rate faster than 𝜏 ≡ sup𝜷,𝜸 𝜆max({𝑹(𝜷, 𝜸)}
−1𝑹0).

To make further assumptions, we need to introduce
some notations similar to those in Wang (2011) and
Xie and Yang (2003). We denote a local neighborhood
of 𝜷

0
= (𝜷

0⊤
1 , … , 𝜷

0⊤
𝐺 )

⊤ as 𝑛𝑇 = {𝜷 = (𝜷
⊤
1 , … , 𝜷

⊤
𝐺)
⊤ ∶

max𝑔=1,…,𝐺 ||{𝑯∗

𝑔(𝜷
0
𝑔)}

1∕2(𝜷𝑔 − 𝜷
0
𝑔)|| ≤ 𝐶𝜏1∕2}. Lastly,

we denote 𝜀𝑖𝑡 = 𝐴
−1∕2

𝑖𝑡
(𝜷
0

𝑔0
𝑖
){𝑦𝑖𝑡 − 𝑚(𝒙

⊤
𝑖𝑡
𝜷
0

𝑔0
𝑖
)} and

𝜺𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑇)
⊤ for all 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇.

We here give some regularity assumptions, and the other
technical assumptions are given in Supporting Informa-
tion Section S.1.

Assumption 1.

(A1) (i) For all 𝑔 = 1,… , 𝐺, the unknown parameter 𝜷𝑔
belongs to a compact subset ∈ ℝ𝑝, the true param-
eter value 𝜷0𝑔 lies in the interior of , (ii) the covari-

ates {𝒙𝑖𝑡, 𝑖 = 1, … , 𝑛, 𝑡 = 1, … , 𝑇} are in a compact set
 .

(A2) (i) For all 𝑔 = 1,… , 𝐺, lim𝑛→∞(1∕𝑛)
∑𝑛

𝑖=1
1{𝑔0

𝑖
=

𝑔} = 𝜋𝑔 > 0, and (ii) for all 𝑔, 𝑔′ = 1, … , 𝐺 such that
𝑔 ≠ 𝑔′ and 𝑐 > 0,min1≤𝑔,𝑔′≤𝐺 ||𝜷0𝑔 − 𝜷0𝑔′ || > 𝑐.

(A3) 𝜏𝜆−1
min
(𝑯

∗
) → 0.

(A4) For all 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇, 𝐸[𝜀2+2∕𝜁
𝑖𝑡

] ≤ 𝑀 for
some 0 < 𝜁 ≤ 1.

(A5) The eigenvalues of the true correlation matrix 𝑹0

are bounded away from 0, and the eigenvalues of
𝑹(𝜷, 𝜸) are bounded away from0 uniformly for any 𝜷
and 𝜸 . All off-diagonal elements of 𝑹0 are uniformly
bounded away from 1.

Assumption (A1) seems to be slightly strict. However,
the compactness of the parameter space and the set of
all possible covariates is required because in the proof
of the consistency of our GGEE estimators, we need to
bound 𝑎′′(𝜃𝑖𝑡) and 𝑢′𝑖𝑡(𝜂𝑖𝑡) uniformly on the whole param-
eter space for all 𝑖 = 1, … , 𝑛 and 𝑡 = 1, … , 𝑇. Assumption
(A2) is typically imposed in the literature on the grouping
approach in panel data models (Bonhomme & Manresa,
2015), which ensures that the 𝐺 subgroups are well sepa-
rated so that the parameters 𝜷𝑔s and 𝜸 can be identifiable.
Assumption (A3) is the same as the condition (L*) in
Xie and Yang (2003). Assumption (A4) is slightly stronger
than the condition in Lemma 2 of Xie and Yang (2003)
since we require the fourth moment of error terms to be
finite. Assumption (A5) is the same assumption imposed
well in the literature on GEE with large cluster sizes.
Assumption (A5) is a much weaker assumption than the
one typically adopted in the existing literature on the
grouped estimation (Bonhomme & Manresa, 2015; Gu &
Volgushev, 2019; Zhang et al., 2019) in which {𝜀𝑖𝑡}𝑡=1,…,𝑇 is
assumed to satisfy some strong mixing conditions with a
faster-than-polynomial decay rate. Such assumptions are
quite unrealistic in longitudinal data analysis, so we do
not impose any restriction on the correlation strength of
{𝜀𝑖𝑡}𝑡=1,…,𝑇 , which is essentially related to the use of a kind
of Mahalanobis distance for grouping assignment given in
(3). Moreover, since we assume that true correlations are
uniformly bounded away from 1, we can estimate each 𝜷𝑖
consistently by solving 𝑺𝑖(𝜷𝑖) = 0 from the assumptions in
Supporting Information Section S.1, as argued in Xie and
Yang (2003).
We now give our main theorems. We first establish

the existence and weak consistency of the GGEE esti-
mators and the classification consistency of the grouping
variables.

Theorem 1. Suppose the Assumptions (A1)–(A5) and the
assumptions in Supporting Information Section S.1 hold.
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ITO and SUGASAWA 1873

For all 𝑔 = 1,… , 𝐺, 𝑺𝑔(𝜷𝑔) = 0 has a root 𝜷𝑔 such that
𝜷𝑔 → 𝜷

0
𝑔 in probability. Moreover, as 𝑛 and 𝑇 tend to

infinity such that 𝑛∕𝑇𝜈 → 0 for some 𝜈 > 0, it holds that
𝑃(max1≤𝑖≤𝑛 |𝑔𝑖(𝜷) − 𝑔0𝑖 | > 0) = 𝑜(1) + 𝑂(𝑛𝑇−𝛿) for all 𝛿 >
0 for 𝑔𝑖(𝜷)s are obtained by (3).

Since the second part of Theorem 1 holds for all 𝛿 >
0, the probability of miss-clustering vanishes if we take
𝛿 larger than 𝜈 in Assumption (A9) (iv) in Supporting
Information Section S.1.
We next establish the asymptotic normality of 𝜷𝑔 for

𝑔 = 1,… , 𝐺. The following notations are similar to Xie and
Yang (2003): 𝑐∗ = max1≤𝑔≤𝐺 𝜆max(𝑴

∗

𝑔(𝜷
0
𝑔)
−1𝑯

∗

𝑔(𝜷
0
𝑔)) and

𝛾∗ = max
1≤𝑔≤𝐺

max
𝑖∶𝑔0

𝑖
=𝑔
𝜆max

(𝑯
∗

𝑔(𝜷
0
𝑔)
−1∕2𝑫⊤𝑖 (𝜷

0
𝑔)𝑽

−1

𝑖 (𝜷
0
𝑔)𝑫𝑖(𝜷

0
𝑔)𝑯

∗

𝑔(𝜷
0
𝑔)
−1∕2).

The following result is a direct consequence of Theorem 4
in Xie and Yang (2003) combined with Lemma S.9 in
Supporting Information Section S.1.

Theorem 2. Suppose the Assumptions (A1)–(A5) and the
assumptions in Supporting Information Section S.1 hold.
Moreover, suppose that, for all 𝑔 = 1,… , 𝐺, there exists a
constant 𝜁 such that (𝑐∗𝑇)1+𝜁𝛾∗ → 0 as 𝑛 → ∞. Moreover,
suppose the marginal distribution of each observation has
a density of the form from (1). Then, as 𝑛 and 𝑇 tend
to infinity such that 𝑛∕𝑇𝜈 → 0 for some 𝜈 > 0, we have
𝑴
∗

𝑔(𝜷
0
𝑔)
−1∕2𝑯

∗

𝑔(𝜷
0
𝑔)(𝜷𝑔 − 𝜷

0
𝑔) → 𝑁(0, 𝑰𝑝) in distribution.

From Theorem 2, it can be easily shown that for
all 𝑛, {𝑯

∗

𝑔(𝜷
0
𝑔)}

−1𝑴
∗

𝑔(𝜷
0
𝑔){𝑯

∗

𝑔(𝜷
0
𝑔)}

−1 is minimized in the
matrix sense when 𝑽𝑖 = 𝚺𝑖 for all 𝑖. This implies that the
group GEE estimator becomes most efficient when we
can specify the working correlation matrix correctly, and
the corresponding asymptotic variance of 𝜷𝑔 is given by
lim𝑛→∞[

∑𝑛

𝑖=1
1{𝑔0

𝑖
= 𝑔}𝑫⊤𝑖 𝚺

−1
𝑖 𝑫𝑖]

−1.
Moreover, {𝑯𝑔(𝜷𝑔)}

−1𝑴𝑔(𝜷𝑔){𝑯𝑔(𝜷𝑔)}
−1 can be used as

the estimator of the asymptotic variance of 𝜷𝑔. Since this
estimator of the asymptotic variance of 𝜷𝑔 involves𝑴𝑔(𝜷𝑔)

depending on the unknown covariancematrix 𝚺̂𝑖 = 𝚺𝑖(𝜷𝑔𝑖 )
for 𝑔𝑖 = 𝑔, following Liang and Zeger (1986), we suggest
obtaining𝑴𝑔(𝜷𝑔) by

𝑛∑
𝑖=1

1(𝑔𝑖 = 𝑔)𝑫
⊤
𝑖 (𝜷𝑔)𝑽

−1
𝑖 (𝜷𝑔){𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔)}

{𝒚𝑖 − 𝑚(𝑿𝑖𝜷𝑔)}
⊤𝑽−1𝑖 (𝜷𝑔)𝑫𝑖(𝜷𝑔)

|||𝜷𝑔=𝜷𝑔 ,

which is consistent to 𝑴
∗

𝑔(𝜷
0
𝑔) as 𝑛 → ∞ from Lemma

1 in Supporting Information Section S.2. Similarly, we
can show that 𝑯𝑔(𝜷𝑔) is consistent to 𝑯

∗

𝑔(𝜷
0
𝑔), which

implies that {𝑯𝑔(𝜷𝑔)}
−1𝑴𝑔(𝜷𝑔){𝑯𝑔(𝜷𝑔)}

−1 converges to
the asymptotic variance of 𝜷𝑔. Although the variability
in the estimation of grouping parameters can be ignored
according to Theorems 1 and 2, it can be considerable
under finite sample sizes. As an alternative method,
we also suggest using clustered bootstrap (eg, Field &
Welsh, 2007). This approach generates the bootstrap sam-
ple 𝑦∗1 , … , 𝑦

∗
𝑛 from the distribution placing probability 1∕𝑛

on each of 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑇). Letting 𝜷
∗

𝑔 be the estimator
obtained from the bootstrap sample 𝑦∗1 , … , 𝑦

∗
𝑛, the asymp-

totic variance of 𝜷𝑔 can be approximated by the sample

variance of replications of 𝜷
∗

𝑔.

4 SIMULATION STUDIES

We investigate the finite sample performance of the pro-
posed GGEE method through simulation studies. First,
we consider the estimation and classification accuracy
of the GGEE estimator. To this end, we generated a
two-dimensional covariate vector (𝑥1𝑖𝑡, 𝑥2𝑖𝑡) from a two-
dimensional normal distribution with mean 0, marginal
variance 1, and correlation 0.4, for 𝑖 = 1, … , 𝑛 and 𝑡 =
1, … , 𝑇. We considered the logistic model for the marginal
expectation of 𝑌𝑖𝑡, namely, 𝑌𝑖𝑡 ∼ Ber(𝜋𝑖𝑡) and logit(𝜋𝑖𝑡) =
𝑿⊤𝑖𝑡𝜷𝑔𝑖 , where 𝑿𝑖𝑡 = (1, 𝑥1𝑖𝑡, 𝑥2𝑖𝑡)

⊤, 𝑔𝑖 ∈ {1, … , 𝐺}, and
𝜷𝑔 = (𝛽𝑔0, 𝛽𝑔1, 𝛽𝑔2)

⊤ is a vector of unknown regression
coefficients. Here, we set 𝐺 = 3 and 𝜷1 = (0, −2, 0)

⊤,
𝜷2 = (1, 1, 2)

⊤, and 𝜷3 = (−1, 1, −2)
⊤. For the true group-

ing assignment, we set 𝑔𝑖 = 1 for 𝑖 = 1, … , 𝑛∕3, 𝑔2 = 2 for
𝑖 = 𝑛∕3 + 1,… , 2𝑛∕3 and 𝑔𝑖 = 3 for 𝑖 = 2𝑛∕3 + 1,… , 𝑛.
Based on the probability 𝜋𝑖𝑡, we generated (𝑌𝑖1, … , 𝑌𝑖𝑇)
from a correlated binary vector using R package “bindata”
with two scenarios of correlation matrix, exchangeable
correlation matrix with 0.5 correlation parameter, and
AR(1) correlation matrix with 0.7 correlation parameter.
We then applied the proposed GGEE method with 𝐺 = 3
and four options of correlation matrices, independent
(ID), exchangeable correlation (EX), AR(1) correlation
(AR), and unstructured correlation (US) matrices, and
unknown parameters in these correlation matrices were
also estimated. For comparison, we also applied the
naive grouping (NG) method that first separately fits the
logistic regression to each subject to estimate subject-
specific regression coefficients, then group them via
𝑘-means clustering, and re-estimate group-wise regression
coefficients.
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1874 ITO and SUGASAWA

TABLE 1 Average values of squared error loss of the regression coefficients in three groups based on the proposed grouped GEE method
with independent (ID), exchangeable correlation (EX), first-order autoregressive (AR), and unstructured (US) working correlation matrices.
The results of the naive grouping (NG) method using the subject-wise estimation of regression coefficients are also given for comparison. The
reported values are averaged over 5000 Monte Carlo replications and are multiplied by 100

True correlation: EX True correlation: AR
(𝒏, 𝑻) Group ID EX AR US NG ID EX AR US NG

1 8.8 7.8 9.0 8.7 12.9 7.9 7.4 7.2 7.3 10.2
(180,10) 2 9.3 8.3 9.1 8.6 12.7 8.2 7.6 7.5 7.4 10.1

3 9.3 7.8 9.3 8.7 12.7 8.0 7.4 7.6 7.7 10.3
1 4.4 3.7 4.4 5.0 5.0 3.1 2.9 2.8 3.2 3.1

(180,20) 2 4.3 3.8 4.3 5.1 4.9 3.1 2.9 2.8 3.2 3.2
3 4.3 3.8 4.4 5.3 5.0 3.1 3.0 2.8 3.3 3.0
1 6.5 5.2 6.2 5.6 10.3 5.8 5.0 5.0 4.7 7.4

(270,10) 2 6.4 5.4 6.1 5.6 10.1 5.7 4.9 4.8 5.0 7.5
3 6.8 5.2 6.3 5.5 10.4 5.7 4.8 4.8 4.8 7.5
1 2.9 2.5 2.8 3.0 3.4 2.1 1.9 1.8 2.0 2.1

(270,20) 2 2.9 2.5 2.9 2.9 3.4 2.0 2.0 1.9 1.9 2.0
3 2.8 2.5 2.9 3.0 3.4 2.1 2.0 1.9 2.0 2.1

TABLE 2 Average values of classification error (%) of the
grouping parameters in the grouped GEE analysis with independent
(ID), exchangeable correlation (EX), first-order autoregressive (AR),
and unstructured (US) working correlation matrices, averaged over
5000 Monte Carlo replications

True correlation: EX True correlation: AR
(𝒏, 𝑻) ID EX AR US ID EX AR US
(180, 10) 9.6 4.4 6.6 5.3 6.5 4.8 4.0 4.8
(180, 20) 4.3 1.5 2.3 1.8 1.9 1.6 1.2 1.5
(270, 10) 8.5 4.3 6.0 4.9 6.1 4.6 4.0 4.4
(270, 20) 3.7 1.5 2.1 1.4 1.8 1.4 1.3 1.4

We evaluated the performance of the estimation of 𝜷𝑔 by

using the squared error loss defined as SEL𝑔 =
∑2

𝑘=0
(𝛽𝑔𝑘 −

𝛽𝑔𝑘)
2, and assessed the classification accuracy via the

classification error given by CE = 𝑛−1
∑𝑛

𝑖=1
1(𝑔𝑖 ≠ 𝑔𝑖). In

Tables 1 and 2, we reported the average values of SEL
and CE using 5000 Monte Carlo replications, respectively,
under four combinations of (𝑛, 𝑇).
From Table 1, we can see that the correct specification

of working correlation matrices induces the most effi-
cient estimation of the regression coefficient. In contrast,
using the other working correlations that are not nec-
essarily equal to the true correlation structures can still
provide a more efficient estimation than the independent
working structure. We also note that the US working cor-
relation includes both EX and AR, although the number of
unknown parameters is much larger than these structures.
Hence, the estimation performance under the moderate
sample size such as (𝑛, 𝑇) = (180, 10) is not very satis-

factory, but the performance improves as the sample size
increases. Regarding NG, the performance is comparable
when 𝑇 is not small (eg, 𝑇 = 20), while the performance
gets worse as 𝑇 decreases. This would be because the
subject-wise fitting does not perform well when 𝑇 is not
large, leading to poor grouping results. From Table 2, it is
observed that introducing working correlation structures
in the classification step (3) achieves a more accurate clas-
sification than the common classification strategy using
the standard sum of squared residuals as adopted in exist-
ing literature when observations within the same subject
are correlated. Moreover, the results reveal that the correct
specification of the working correlation leads to the most
accurate classification. In the Supporting Information, we
provide simulation results for 95% confidence intervals of
𝛽1, 𝛽2, and 𝛽3.
We next investigate the performance of the CVA selec-

tion strategy given in Section 2.3 by adopting the same
data-generating process with an exchangeable correlation
structure. For the simulated data set, we selected the num-
ber of components 𝐺 using the CVA criteria from the
candidate 𝐺 ∈ {2, 3, … , 7}, noting that the true number of
components is 3. We employed four working correlations,
ID, EX, AR, and US, to carry out the GGEE analysis for
each 𝐺. Based on Monte Carlo replications, we obtained
selection probabilities of each 𝐺, which are reported in
Table 3.
It is observed that the use of independent working cor-

relations under significant correlations within the same
individual does not necessarily provide satisfactory selec-
tion performance when the number of samples is limited.
We can also see that the selection probabilities of the true
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ITO and SUGASAWA 1875

TABLE 3 Selection probabilities (%) of the number of groups
(𝐺) obtained from the CVA criteria in Section 2.3 with independent
(ID), exchangeable (EX), first-order autoregressive (AR), and
unstructured (US) working correlation matrices, based on 200
Monte Carlo replications

Working 𝑮

(𝒏, 𝑻) correlation 2 3 4 5 6 7
(180,10) ID 0.5 61.0 8.0 10.0 3.5 17.0

EX 3.0 95.0 0.5 1.0 0.5 0.0
AR 3.0 78.0 5.0 7.5 2.5 4.0
US 0.0 89.5 2.0 2.5 1.0 5.0

(180,20) ID 0.0 94.0 3.0 1.0 0.5 1.5
EX 0.0 100.0 0.0 0.0 0.0 0.0
AR 0.0 100.0 0.0 0.0 0.0 0.0
US 0.0 93.5 5.5 0.0 0.0 1.0

(270,10) ID 3.0 77.5 3.5 9.5 0.5 6.0
EX 2.0 98.0 0.0 0.0 0.0 0.0
AR 2.0 97.0 0.0 0.5 0.0 0.5
US 0.5 98.5 0.5 0.0 0.5 0.0

(270,20) ID 0.0 96.5 1.0 1.5 0.0 1.0
EX 0.5 99.5 0.0 0.0 0.0 0.0
AR 0.0 100.0 0.0 0.0 0.0 0.0
US 0.0 100.0 0.0 0.0 0.0 0.0

number of components based on EX and US working cor-
relations tend to be larger than those of using the AR
working correlation structure since the true correlation is
EX. Moreover, when the sample sizes are large, such as
(𝑛, 𝑇) = (270, 20), the adopted CVA strategy can select the
true number of components with a probability of almost 1,
which would be compatible with the selection consistency
of the strategy.
Finally, we compare the proposed GGEE method with

some existing methods under situations where the sub-
jects do not necessarily admit perfect grouping. To this end,
we considered the following underlying scenarios for the
subject-specific regression coefficients:

(S1) 𝜷𝑖 ∼ 𝜋1𝜹(0, −2, 0) + 𝜋2𝜹(1, 1, 2) + 𝜋3𝜹(−1, 1, −2),

𝜋1 = 𝜋2 = 𝜋3 =
1

3
,

(S2) 𝜷𝑖 = (0, −2, 0)1(𝑔𝑖 = 1) + (1, 1, 2)1(𝑔𝑖 = 2)

+(−1, 1, −2)1(𝑔𝑖 = 3) + 𝑈([−0.5, 0.5]3),

(S3) 𝜷𝑖0 ∼ 𝑈([−0.2, 0.2]),

𝛽𝑖1 ∼ 𝑈([−2, 2]), 𝛽𝑖2 ∼ 𝑈([0, 2]),

where 𝜹(𝑎1, 𝑎2, 𝑎3) denotes a Dirac distribution on
(𝑎1, 𝑎2, 𝑎3), 𝑈(𝐴) denotes the uniform distribution on

TABLE 4 Squared root of mean squared error (RMSE) of
estimators of the success probability of future observations,
averaged over 1000 Monte Carlo replications, for the proposed
method with two working correlation matrices (GGEE-EX and
GGEE-US), and four competing methods

(S1) (S2) (S3)
Method 𝑻 = 𝟏𝟎 𝑻 = 𝟐𝟎 𝑻 = 𝟏𝟎 𝑻 = 𝟐𝟎 𝑻 = 𝟏𝟎 𝑻 = 𝟐𝟎

CGEE-EX 12.6 6.3 15.0 9.5 29.0 23.8
CGEE-US 13.8 8.9 16.1 11.4 29.1 24.2
RC 22.3 21.3 22.5 21.6 24.2 24.3
LCM 13.7 10.2 15.8 12.7 24.5 24.1
MT 32.7 33.3 34.0 35.4 20.5 21.3
PWL 19.9 15.9 20.8 16.8 21.3 21.5

the region 𝐴, and 𝑔𝑖 is the grouping variable defined as
𝑔𝑖 = 1 for 𝑖 = 1, … , 𝑛∕3, 𝑔2 = 2 for 𝑖 = 𝑛∕3 + 1,… , 2𝑛∕3
and 𝑔𝑖 = 3 for 𝑖 = 2𝑛∕3 + 1,… , 𝑛. Note that scenario (S1)
is quite similar to the one used in the previous simulation
study. On the other hand, in scenarios (S2) and (S3), the
subjects do not admit complete classification since the
regression coefficients are different among subjects. We
also note that in scenario (S2), the subjects may admit
approximate classification based on 𝑔𝑖 , but there seems to
be no trivial classification in scenario (S3) as the regression
coefficients are completely random. The binary response
variable 𝑌𝑖𝑡 is generated in the same way as the previous
study with the exchangeable correlation structure with
0.5 correlation parameter. We generated a new vector of
covariates 𝑿𝑖,𝑇+1 from the same data-generating process,
and the target to be estimated is the success probability of
future observations, 𝜇𝑖 ≡ logit

−1
(𝑿⊤𝑖,𝑇+1𝜷𝑖). For the sim-

ulated data set, we applied the proposed GGEE method
with the estimated number of groups to estimate 𝜷𝑖 by 𝜷𝑔𝑖 .
For comparison, we applied random coefficient models
(RC), growth mixture models (eg, Ram & Grimm, 2009),
denoted by GMM, and pairwise penalization approaches
(Zhu et al., 2021), denoted by PWL, to estimate the subject-
specific coefficient 𝜷𝑖 , where the details of each method
are provided in the Supporting Information. Then, 𝜇𝑖
is estimated by 𝑿⊤𝑖,𝑇+1𝜷𝑖 . Furthermore, we also applied
the generalized linear mixed model tree (Fokkema et al.,
2018; Hajjem et al., 2017), denoted by GLMMT, to directly
estimate 𝜇𝑖 , for which we used the R package “glmertree”
(Fokkema et al., 2018).
The performance of estimating 𝜇𝑖 is measured by the

square root of mean squared errors (RMSE), defined
as {𝑛−1

∑𝑛

𝑖=1
(𝜇𝑖 − 𝜇𝑖)

2}1∕2. The averaged values of RMSE
based on 1000 Monte Carlo replications are presented in
Table 4.
In scenario (S1), since the subject-specific regression

coefficients can be perfectly grouped, the proposed meth-
ods provide better estimation accuracy than the other
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1876 ITO and SUGASAWA

F IGURE 1 Estimates (solid line) and 95% point-wise confidence intervals (dotted line) of group-wise quadratic effects of age (left) and
group-wise probability being “unhealthy” (right) in detected eight heterogeneous groups. This figure appears in color in the electronic version
of this article, and any mention of color refers to that version

methods except for LCM. Moreover, in scenario (S2), the
subjects do not hold exact grouping structures but can
be approximately grouped, and the proposed method still
works better than the other methods except for LCM.
On the other hand, the regression coefficients are com-
pletely random in scenario (S3), and the results show that
MT and PWL are appealing. It should be noted that the
difference between the GGEE and RC methods are rela-
tively comparable, whichwould indicate that the proposed
GGEE method can reasonably approximate the subject-
specific random coefficients by grouping subjects having
similar regression coefficients. Finally, comparing the two
working correlations, the EX correlation provides better
performance than the US correlation since the EX is the
true underlying correlation structure within the same sub-
ject. In contrast, the US correlation is quite comparable
with EX.

5 APPLICATION TO THE HEALTH
AND RETIREMENT STUDY (HRS)

We apply the proposed method to the HRS data, which
come from the study conducted by theUniversity ofMichi-
gan. This longitudinal panel study surveys adults over the
age of 50 in the United States through detailed interviews
once every 2 years for each participant and provides infor-
mation on their health and economic circumstances. For
more details, see Juster and Suzman (1995). The main goal
of the study is to investigate the change in participants’
health conditions in the HRS study over time and the

relevant factors associated with their condition. We used
the data set from the HRS study, which can be obtained
from an R Package “LMest.” The sample includes 𝑛 =
7074 individuals followed at 𝑇 = 8 approximately equally
spaced occasions without missing responses or dropouts.
The response variable is the self-reported health status
(named SHLT), inwhich five categories of statuses: “poor,”
“fair,” “good,” “very good,” and “excellent,” are recorded
as an ordinal response variable from 1 to 5, noting that a
smaller value corresponds to a high level of health condi-
tion. We then dichotomized the response by setting values
of 1 or 2 to “healthy” (1) and the other values to “unhealthy”
(0). As auxiliary information, we adopted indicator vari-
ables of gender (1:male, 0:female), indicators of black and
others, respectively, indicators of two education levels,
“some college” (SC) and “college and above” (CAA), and
age, which is measured in years for each time occasion.
We also included a quadratic term age and seven time
effects for 𝑡 = 2, … , 8. Among the individuals, it would
be reasonable to assume that different types of individ-
uals exist, that is, some individuals are always healthy,
whereas some individuals are not, or their health condition
changes during the term. Therefore, instead of focusing on
population-averaged regression coefficients, we here focus
on such potential heterogeneity in the population to apply
the proposed GGEE approach.
Let 𝑦𝑖𝑡 be the binary response variable, and 𝑥𝑖𝑡

be the vector of five covariates and an intercept, for
𝑖 = 1, … , 𝑛(= 7074) and 𝑡 = 1, … , 𝑇(= 8). We consider
the mean structure 𝐸[𝑦𝑖𝑡|𝒙𝑖𝑡] = 𝑚(𝒙⊤𝑖𝑡𝜷𝑔𝑖 ) with 𝑚(𝑥) =

exp(𝑥)∕{1 + exp(𝑥)} and 𝑔𝑖 ∈ {1, … , 𝐺}. In this analysis, we
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ITO and SUGASAWA 1877

TABLE 5 Point estimates (PE) and standard errors (SE) of group-specific regression coefficients, where the values of PE and SE are
multiplied by 1000

Group
1 2 3 4 5 6 7 8

Group size 1478 1650 191 686 310 117 559 2083
Intercept PE −0.87 0.79 −7.64 2.87 4.33 7.02 −2.29 −0.02

SE 0.01 0.01 0.83 0.13 0.07 0.54 0.09 0.01
Gender PE 4.25 −1.50 1138.89 −11.86 195.25 −1455.80 34.66 2.33

SE 2.07 1.66 75.91 27.53 10.40 75.20 29.57 1.54
Black PE 0.67 −0.28 −200.84 −1.34 37.33 −481.21 2.17 0.23

SE 0.27 0.26 17.67 3.08 1.93 30.07 1.87 0.15
Other PE −0.16 0.06 42.70 −0.10 0.54 −41.30 −1.64 −0.03

SE 0.04 0.01 4.10 0.30 0.02 2.25 1.10 0.02
SC PE 0.63 −0.81 −31.44 0.36 95.86 339.82 5.53 0.32

SE 0.36 0.69 50.64 0.82 3.76 45.74 5.07 0.22
CAA PE −1.78 1.40 84.76 6.20 −145.79 406.11 −11.38 −0.70

SE 0.65 0.83 25.22 9.68 7.17 47.82 7.99 0.45
Age PE −25.82 23.28 −370.78 85.88 126.41 317.68 −70.48 −0.75

SE 0.31 0.24 24.73 3.89 2.12 15.64 2.68 0.19
Age2 PE 0.24 −0.20 6.40 −0.94 −1.89 −5.48 0.70 0.01

SE 0.01 0.00 0.43 0.06 0.03 0.27 0.04 0.00

use unstructuredworking correlation.We first selected the
number of groups, 𝐺, from candidates {2, 3, … , 10}, using
the CVA value. The CVA value for each 𝐺 is shown in
Figure 1 in Supporting Information Section S.5.3, and the
CVA value is minimized at𝐺 = 8. Thus, we carried out the
GGEE analysis with 𝐺 = 8 in what follows. The estimated
regression coefficients and their standard errors in eight
groups are shown in Table 5.
It is observed that estimated regression coefficients in

the eight groups are very different from each other. To visu-
alize the difference, we computed the estimated quadratic
function of the age effect in Figure 1, which indicates that
some groups have representative shapes of the age effect.
For example, the probability of “health” of individuals

classified in group 3 increases according to their age, while
the opposite tendency is confirmed in group 6. Although
clear differences among four groups (groups 1, 2, 7, and
8) are not observed from Figure 1, the regression coef-
ficients of other covariates reported in Table 5 are quite
different. Moreover, in each group, we computed average
values of 𝑦𝑖𝑡 for 𝑡 = 1, … , 𝑇, where the results are pre-
sented in the right panel in Figure 1. From the result, we
can more directly understand the characteristics of the
eight groups. For example, individuals in groups 3 and 7
have a low probability of being “healthy” at the earlier
period, and the probability increases with the period. On
the other hand, the probability in groups 5 and 6 decreases
according to the period, but there is a difference in the
shape of the decrease. Therefore, we can conclude that

the classical GEE analysis assuming homogeneity in the
regression coefficients is not an appropriate strategy for
the data set. In contrast, the proposed GGEE analysis can
successfully capture the potential heterogeneity among
individuals.

6 CONCLUDING REMARKS

This paper developed a new statistical approach to ana-
lyzing longitudinal data. The proposed method called
GGEE analysis carries out grouping subjects and esti-
mating the regression coefficients simultaneously to take
account of potential heterogeneity. We employed working
correlations in estimation and grouping steps and provided
a simple iterative algorithm to obtain GGEE estimator.
We also developed asymptotic properties of the proposed
method. The simulation studies and an application to the
HRS suggest the usefulness of the proposed approach.
The proposed method has some useful extensions. First,

we can introduce a penalty term in the grouping step
as considered in Sugasawa (2021), which can make sub-
jects have similar characteristics or covariates tend to be
classified to the same group. This might make the esti-
mation results more interpretable. Second, it would be
possible to extend the proposed GGEE method for incom-
plete longitudinal data. Since the GGEE separately applies
the standard GEE to each group, we can employ existing
methodology to handle missing data in the standard GEE
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1878 ITO and SUGASAWA

method. Moreover, when the dimension of the regression
coefficients is large, it would be better to conduct vari-
able selection, which can be done by introducing a penalty
function in the estimating equation as considered inWang
et al. (2012). Finally, instead of using working correla-
tion matrices, it would be beneficial to consider quadratic
inference functions (Qu et al., 2000), and develop the
GGEE method with theoretical justifications. We leave
the detailed investigation of these issues for interesting
future works.
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